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We calculate steady solutions of the Euler equations for any given value of energy 
and circulation (and angular momentum in the case of a circular domain). A 
linear relationship between vorticity and stream function is assumed. These solutions 
correspond to the predicted self-organization into a maximum-entropy state, in the 
limit of strong mixing. Vorticity mixing is then only weakly restricted by the constraint 
of energy conservation. While maximum-entropy solutions depend in general on the 
whole probability distribution of vorticity levels, these linearized results depend only 
on a single control parameter, yet keeping much of the general structure of the 
problem. A convenient classification of the maximum-entropy states is thus provided. 
We show furthermore how to extend these linearized results as an expansion in 
energy, involving successive moments of the vorticity probability distribution. They 
are applied to a rectangular domain and compared with existing numerical and 
laboratory results. We predict that the flow organizes into a single vortex in the 
square domain, but into a two-vortex dipolar state in a rectangle with aspect ratio 
greater than 1.12. The case of a circular domain is also explicitly solved, taking into 
account the conservation of the angular momentum. 

1. Introduction 
The formation of coherent structures is a remarkable property of two-dimensional 

turbulence. Such organization is observed in large-scale oceanic or atmospheric 
flows, and can be reproduced in laboratory experiments and numerical simulations. 
A general explanation of this organization has been proposed by Onsager (1949), 
in terms of equilibrium statistical mechanics for a set of point vortices. This is a 
remarkable anticipation since observations were very scarce at that time. This idea 
has been further developed by Joyce & Montgomery (1973) and Montgomery & Joyce 
(1974), who have obtained more explicit predictions by a mean field approximation. 
The result appears as a relationship between the locally averaged vorticity and stream 
function, which selects a steady solution of the Euler equations. However, this 
prediction depends on the distribution of the strengths of the point vortices used to 
model the initial state, so it is not unique. It can lead to inconsistencies: in particular 
the maximum vorticity is not bounded by the initial maximum, as it should be for 
the two-dimensional Euler equations. 

A solution to this problem was proposed by Kuz’min (1982), then rediscovered 
and further developed by Robert (1990) and Robert & Sommeria (1991), and in- 
dependently by Miller (1990). This equilibrium statistical theory is applied directly 
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to the continuous Euler equations, developing ideas first proposed in the context 
of the Vlasov equation by Lynden-Bell (1967). In this case the standard proce- 
dure for Hamiltonian systems of particles is not available, but still the method 
is justified (on a weaker basis) by a set of rigorous properties (Robert 1991; 
Michel & Robert 1994). The result is again a steady solution of the Euler equa- 
tions, on which fine-scale vorticity fluctuations are superimposed. The relationship 
between vorticity and stream function is different than in Montgomery & Joyce 
(1974), and it is now quite consistent with the properties of the continuous Euler 
equations. 

This theory provides in principle a well-defined prediction for the final organization 
of a perfect fluid with any initial condition and shape of the fluid domain. However, 
the practical determination of the equilibrium flow is generally difficult; it requires 
solution of a nonlinear partial differential equation, with unknown coefficients, given 
only indirectly through integral constraints, corresponding to the conserved quantities. 
Different numerical methods have been developed to solve this problem (Pointin & 
Lundgren 1976; Smith & O’Neil 1990; Whitaker & Turkington 1994), but still the 
solutions must be classified according to several bifurcation parameters, and it is 
often difficult to unravel the structure of the bifurcation diagram, except for the most 
simple cases. 

The present paper provides a general approach to classify these optimal solutions. 
The idea is to linearize the relationship between vorticity and stream function, which 
appears to be valid in a limit of strong mixing. The solutions can be then related 
to the eigenfunctions of the Laplacian in the fluid domain. Although the partial 
differential equation is linearized, the problem is still nonlinear due to the constraint 
on energy, and a rich bifurcation diagram is already obtained in this approximation, 
and provides the skeleton for the more general problem. While the optimal structure 
depends in principle on the whole distribution of vorticity levels, the linearized 
solutions depend only on the circulation and enstrophy. This can be considered as 
the first term in an expansion of the solution in terms of the successive moments of 
the vorticity distribution. The idea of this expansion has been already sketched in 
Sommeria (1994), and it is here systematically developed. 

Of course the determination of particular solutions of the Euler equations involving 
a linear relationship between vorticity and stream function is an old idea. The dipole 
translating in inviscid fluid is a well-known example (Chaplygin 1902), as well as 
its quasi-geostrophic generalization, called a modon (Stern 1975). The model of 
Fofonoff (1954) for inertial oceanic circulation is another example in the quasi- 
geostrophic context. Such examples are particular families of solutions depending 
on some parameters. In the present paper, we seek instead the linearized solution 
corresponding to a given set of integral constraints (expressing the conserved quantities 
of the system). It is therefore an actual prediction of the flow organization from a 
class of initial states, not just an example of steady solution. 

We first recall in $2 the principle of the statistical theory, in the general case of 
any continuous vorticity distribution, and explain our expansion procedure for strong 
mixing. The general solutions of the linearized problem are given in $3, in term 
of the eigenmodes of the Laplacian in the fluid domain. Several general solutions 
are obtained for a given set of integral constraints, and they must be classified by 
their entropy, as discussed in $3.4. Most solutions with lower entropy are not even 
local entropy maxima and can be eliminated, as stated in $3.5. As an illustration of 
this general derivation, we consider in $4 the example of a rectangular domain with 
various aspect ratios. 
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For domains with translational or rotational symmetry, a specific adaptation of 
the general method is necessary, taking into account the corresponding additional 
conserved quantities. The case of a channel, where the momentum is conserved, has 
been numerically studied by Thess, Sommeria & Juttner (1994) and Juttner, Thess 
& Sommeria (1995). In the limit of strong mixing, linearization has led to explicit 
solutions like in the present paper. The case of a disk, where angular momentum 
is conserved, is analysed in $5, and explicitly solved in the limit of strong mixing. 
The case of an infinite domain, with both translational and rotational symmetries, 
is also of particular interest. However it requires specific developments, due to the 
self-confinement of the vorticity structures in a sub-domain with free boundaries, and 
it will be the subject of a second related paper (Chavanis & Sommeria 1996). 

Finally we show in $6 that in the linearized limit, our results are in agreement with 
a form of selective decay hypothesis : the system organizes into the minimal-enstrophy 
state for a given energy (see e.g. Kraichnan & Montgomery 1980; Hasegawa 1985). 

2. The statistical theory: general case and the linearized limit 
2.1. General principles and notation 

The Euler equations are known to develop very complex vorticity filaments, and a 
deterministic descripition of the flow would require a rapidly increasing amount of 
information as time goes on. Following Robert & Sommeria (1991), we develop instead 
a macroscopic description of the system in terms of local probability distributions of 
the different vorticity levels (called Young's measures in mathematics). 

A macroscopic state is defined by the probability p(u, o)  of finding the vorticity level 
o in a small neighbourhood of the position Y. The normalization condition yields at 
each point 

p(r,o)do = 1. J 
The locally averaged field of vorticity is expressed in terms of the probability density 
in the form - . I  o ( r )  = p ( v ,  o)odo. (2.2) 

This locally averaged field is called the macroscopic, or coarse-grained, vorticity field. 
The associated (macroscopic) stream function satisfies in the fluid domain (9) 

o = - A y  with y = O  on ( d 9 ) .  (2.3) 
- 

It is then possible to express the conserved quantities as integrals of the macroscopic 
fields. These conserved quantities are the energy: 

(2.4) 

and the global probability distribution of vorticity ?(a) (i.e. the total area of each 
vorticity level) : 

y(o) = p(r,o)d2r. 

In particular the different moments of the vorticity: 
J (2.5) 
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are conserved. The first-order moment r = rl is the circulation while the second- 
order moment r2 is the (fine-grained) enstrophy. In a domain with rotational 
or translational symmetries, additional quantities are conserved, like the angular 
momentum in the disk (see $5). 
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The most probable macroscopic state is obtained by maximizing the entropy: 

S = - p(r ,  o) In p(v, o)d2vdo, (2.7) J 
with the constraints (2.1) (2.4) and (2.5) brought by the conserved quantities (and 
the normalization). This variational problem is treated by introducing Lagrange 
multipliers so that the first variations satisfy 

where f i  is the inverse temperature and &(a) the 'chemical potential' of species o. 
The resulting optimal probability density p(v, o) is related to the equilibrium stream 
function y by the relationship (see Robert & Sommeria 1991) 

where g(o)  = e-'(U) and Z ( y )  = eecr). The normalization condition (2.1) leads to a 
value of the partition function Z of the form 

Z ( y )  = g(o)  e d U w d o  J 
and the locally averaged vorticity (2.2) is expressed 
function: 

- 1 a l n z  
= fB,&V). =--- 

j aw 

(2.10) 

as a function of the stream 

(2.11) 

The resulting flow can be calculated by solving the corresponding partial differential 
equation : 

- Ay = fp,,(y) with y = 0 on (83). (2.12) 

A steady Euler flow is characterized in general by the existence of a relationship 
between vorticity and stream function, so that f ~ , ~ ( y )  selects a particular steady 
inviscid flow. We notice that in the absence of the energy constraint (i.e p = 0), the 
density probability p(v,o) is uniform so that the mixing is complete. In general, the 
energy constraint prevents complete mixing and a structure remains. This structure 
depends on the Lagrange parameters, which are not directly given (we do not know 
whether their is a thermal bath that could set the temperature of the system, like 
in standard thermodynamics). The available information is, rather, given as integral 
quantities, like the energy and the other conserved quantities known from the initial 
condition. In summary, the stream function y is obtained as a function of B and 
g(o)  by solving (2.12) and the Lagrange multipliers B and g(o)  must be related to the 
conserved quantities thanks to the integral constraints (2.4) and (2.5). In general this 
procedure yields several solutions for given conserved quantities and the relevant one 
must have the highest entropy calculated from (2.7) and (2.9). 
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For any given distribution y (0) of vorticity levels, the accessible energy is restricted 
between a lower and an upper bound (as discussed and computed by Carnevale & 
Vallis 1990). Typical behaviour of the equilibrium states in this accessible energy 
range is represented in figure 1. These states have been numerically computed by 
Juttner (private communication), using the algorithm of Turkington & Whitaker 
(1995). Two cases have to be distinguished: with circulation r zero or not. When 
r # 0, the entropy versus energy determines a bell-shape curve between these bounds 
(figure la). The inverse temperature f l  is the slope dS/dE of this curve; it is positive 
for low energy and negative for high energy. For ) > 0, vorticity is maximum at the 
domain boundary, while it is rather confined to the central region when < 0, as 
shown in the vorticity fields in figure 1. At the lower and upper energy bounds, any 
vorticity mixing is forbiden by the energy constraint, and the entropy remains equal 
to zero. The corresponding slope of the curve S versus E is ) = +co and f l  = -a 
respectively. Between these two bounds, the entropy reaches a maximum with ) = 0, 
corresponding by contrast to complete mixing, with a uniform coarse-grained vorticity 
r/191. The flow is then uniquely determined as the solution of the Poisson equation 
(2.3). 

If the circulation r is zero, the behaviour at high energy is still similar, as shown in 
figure l(b). The two vorticity patches, here with values -1 and +1, remain unmixed. 
By contrast the lower energy bound is now zero: the positive and negative vorticity 
can be arranged into fine intermingled filaments, leading to an arbitrarily small energy 
as the filament width is decreased. In this limit of small energy, the stream function 
vanishes, so that the probabilities become uniform, according to (2.9), leading to a 
maximum entropy at the origin. 

In the case of figure 1, the flow topology does not depend on energy, but transitions 
between different flow structures are often obtained, still with a similar shape for the 
curve S(E) (see for instance Turkington & Whitaker 1995). These transitions depend 
on the distribution of vorticity levels, so that general survey of the equilibrim states is 
a difficult task (even with an efficient numerical method), because of the large number 
of control parameters. In the present paper, we study the limit of strong mixing, for 
which the probabilities are close to uniform: this corresponds to an energy range 
near the maximum of the curve S ( E ) .  Then the argument poy of the exponential 
in (2.9)-(2.11) is small and the function ffi,g(y) can be linearized. The corresponding 
entropy, calculated by (3.12) and (3.13), is plotted as dashed lines in figure 1. We 
observe that the agreement with the exact result is good in a remarkably wide range 
of energy. This approximation is interesting because a rich bifurcation structure 
can be studied analytically, providing good insight for the general determination 
of equilibrium states. Moreover the flow structure depends only on a single control 
parameter in this limit of strong mixing. Notice also that the relationship f ~ , ~  between 
vorticity and stream function can be linear even when the linearized approximation is 
not correct for the entropy. In fact for any energy there exists a particular distribution 
y(o) of vorticity levels for which f ~ , ~  is linear. It corresponds to a Gaussian g(o) (as 
noted by Miller, Weichman & Cross 1992). The stream function is then an eigenmode 
of the Laplacian, and the corresponding probability distribution is given by (2.5) and 
(2.9). 

It will be useful in the following to deal with dimensionless quantities. All the 
dimensions of the problem can be constructed from a unit of length 1911/2 and a 
unit of time (191/r#/2 where 191 is the area of the domain and r2 the fine-grained 
enstrophy. This is equivalent to making 191 = r2 = 1 and we will take this convention 
in the following. 
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2.2. The limit of strong mixing 
From now on, we shall assume g o y 4 1  in order to simplify the previous equations. 
This corresponds to the limit of strong mixing, obtained near the maximum of the 
curve S ( E ) ,  as discussed above. It appears in practice that the approximation remains 
valid even when goy - 1. The relationship between vorticity and stream function 
can be then linearized, so that (2.12) takes the form of a Helmholtz equation: 

- b + P v = P ( Y ) ) + L  (2.13) 

273 

y = O  on (89). 
The constant on the right-hand side of (2.13) has been written in terms of the domain 
average ( y )  to express the constraint on the total circulation r ,  which must be equal 
to the domain integral of the vorticity -Ay. The constant P can be determined from 
the energy constraint (2.4). Expressing the vorticity from the stream function by (2.13) 
this yields 

E = ;P((Y))2 - (v2)) + ;r (Y)). (2.14) 

The problem (2.13), (2.14) has been obtained at this stage only by assuming a 
linear relationship between vorticity and stream function, with the constraints of 
a given circulation r and energy E ,  without specific reference to the statistical 
theory. Although the partial differential equation (2.13) is linear, the global problem 
is nonlinear due to the energy constraint (2.14), and it generally exhibits several 
solutions with bifurcations in the parameter space. 

The specific contribution of the statistical theory will be the selection of the 
solution with the maximum entropy. The statistical theory also specifies the domain 
of validity of (2.13) as a prediction of the final state resulting from turbulent stirring: 
this linearized approximation is justified when goy is small, as discussed above. 
A systematic expansion of (2.5) and (2.9)-(2.11) in powers of Boy is sketched in 
Appendix A. At first order, it yields (2.13) with the relation 

p = (1 - r2)g. (2.15) 

The parameter is thus the inverse temperature within a multiplicative constant. 
This constant 1 - r2 is always positive: indeed, due to the Schwartz inequality, 
(J od2r)’ < 191 J W2d2r, so that r2 < 1 in non-dimensional form. The expression for 
the entropy is obtained (see Appendix A) by a corresponding expansion of (2.7) and 
(2.9), and takes the form S = So + Y’/(l- r2), where So is the entropy in the limit of 
zero energy, for which the probabilities are uniform, p( r ,o )  = y(o), and 

9 = pw’ - (Y”) (2.16) 

Notice that according to (2.13), (2.14), and (2.16), the only conserved quantities 
that we have to take into account in the limit of strong mixing are the energy E and 
the circulation r .  Moreover, it will appear that the structure of the equilibrium state 

FIGURE 1. Entropy versus energy for a given distribution of probability levels, in the rectangular 
domain 2 x 1. The initial condition is (a)  a patch of vorticity $1 and area 1/2 corresponding to a 
circulation r = 0.5, or ( b )  two patches with values +1 and -1 and the same area 1/4, corresponding 
to a circulation r = 0. The long-dashed lines correspond to the prediction S ( E )  given by (3.13) and 
(3.12) in the limit of strong mixing. The associated vorticity fields are indicated by isocontour plots 
(the numerical computations have been provided by B. Juttner, using the algorithm of Turkington & 
Whitaker 1995. The short-dashed line corresponds to the limit of convergence of the computation). 
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depends only on a single control parameter A whose expression is 

P. H .  Chavanis and J .  Sommeria 

r A = -  
(2E)'I2'  

In fact, the structure depends only on A 2 :  the solution associated 

(2.17) 

with a negative A 
can be obtained from the solution corresponding to -A 2 0 by simply reversing the 
signs of the vorticity and the stream function. 

3. General form of the solutions for an arbitrary domain 
In this section the domain (9) is somewhat arbitrary but must not possess any 

specific continuous symmetry that would induce new conserved quantities. In the 
limit of strong mixing, the stream function satisfies the Helmholtz equation (2.13). 
Two cases have to be taken into account depending on whether y is or is not an 
eigenmode of the Laplacian. 

3.1. Eigenmode solutions 
As a first case, we assume 

so that y is an eigenmode yn  of the Laplacian in the domain (9), and /3 = Pn is 
the corresponding eigenvalue. The inverse temperature Pn is then necessarily negative 
(since 2E = - yn(pnyn)d2u > 0). More precisely, according to (2.14) and (3.1) we 
can write the stream function in the form 

P ( V ) + T  = o  (3.1) 

where we have introduced the orthonormal set {y,} ( ( yn2)  = 1) of eigenmodes for 
the Laplacian that vanish on (d9). These solutions (3 .2)  exist only for discrete values 
A,, of the control parameter A,  that can be computed from (2.17), (3.1) and (3.2): 

.it = -Pn(Wn)2. (3.3) 

This equation displays two types of eigenmodes denoted by primes and double primes 
respectively: those with a zero mean value (y:) = 0 that can exist for A = 0 only; 
and those with a non-zero mean value (y:) # 0 that exist for A = A: # 0, given by 
(3.3) (see figure 2, discrete modes). 

3.2. The solutions of the continuum 

We now consider the case where P(y) + r # 0. We can then eliminate the spa- 
tial average in (2.13) by introducing the reduced solution q5p = y / (P(y )  + r) ,  or 
equivalently 

(3.4) 

where q5p is the function satisfying 

- 4fl+ P 4 p  = 1, (3.5) 

q5p = 0 on (39). 
This equation indeed admits a single solution provided P is not an eigenvalue l j n  of 
the Laplacian (the case P = Pn will be considered in the next sub-section). If we 
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A2 
FIGURE 2. Relationship between A2 and /I given by (3.7) (for a rectangular domain with aspect 
ratio 2). The horizontal plateaux corresponding to the ‘mixed solutions’ at /I = /Ii,/I;... are also 
represented. The two kinds of eigenvalues, and the corresponding values of A2 are indicated. The 
dashed part of the line corresponds to solutions of (2.13) with /I < pi, and are not local entropy 
maxima. 

expand 4~ over the set of eigenmodes yn and substitute in ( 3 . 5 ) ,  we find 

involving only the eigenmodes y: with non-zero average (the other eigenmodes are 
not ‘excited’ by the second term in ( 3 . 5 ) ) .  

The inverse temperature p is implicitly determined, as a function of the conserved 
quantities, by the energy constraint (2.14). It will be convenient to write this constraint 
in the form (see Appendix B) 

where we have introduced the function 
P ( P )  = A2F’(P) ( 3 . 7 )  

F ( P )  = P ( 4 p )  - 1 ( 3 . 8 )  

The equation of state ( 3 . 7 )  determines A2 as a function of p, as represented in 
figure 2. We need to invert this function, determining a set of possibles values of p 
from the control parameter A2. Figure 2 has been numerically obtained in a rectangle 
with aspect ratio 2, but the shape of the curve A2 versus P is quite general, and 
can be understood by the mathematical properties of the function F ,  as derived in 
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FIGURE 3. Vorticity iso-lines for solutions of (2.13) in the square domain, corresponding to the 
different parts of the A' - p diagram (analogous to figure 2) (w > 0 as solid lines, w < 0 as dashed 
lines). 

Appendix C. The case of a square is for instance shown in figure 3, together with 
representative vorticity fields. 

For small A 2 ,  a pair of solutions is found around each zero p = p!"' of the function 
F(P) .  We can then expand F around p - b!"', so that (3.7) yields 

p = p p  f iqn) (A2) (3.9) 

where qn) = 1/F'(p!"))1'2. These multiple solutions must be classified according to 
their entropy, and compared to the 'mixed solutions' (see 993.3 and 3.4). 

By contrast, for high values of A2, equation (3.7) yields only one solution. When 
A2 = A:, we have f l  = 0 so that the vorticity is uniform in the whole domain (complete 
mixing). When A2 < A: (negative temperatures) the vorticity has a tendency to fill 
the core of the domain and form structures but when A2 2 A; (positive temperatures) 
it instead concentrates near the boundaries. This increase of the parameter A2 is 
obtained for instance when we increase the circulation r for a fixed (small) energy. 
We then describe a continuous change of behaviour from figure l ( a )  to figure l (b) ,  
near the origin (low energy): the slope p is negative for small circulation and becomes 
positive for larger circulations (the linear approximation however remains valid for 
large A2 only when r3/E41,  see Appendix C, and is not satisfied when approaching 
the low-energy bound of curve A, with unmixed vorticity). 
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3.3. Mixed solutions; analogy with phase transitions 
In the last subsection, we have discussed the case when /3 is not an eigenvalue of 
the Laplacian, so that (3.5) has a unique solution (for a given p). When p tends 
to an eigenvalue of the Laplacian (such that ( y i )  # 0), then 4~ diverges and is 
dominated by the single term proportional to y i  in (3.6). The corresponding state y ,  
given by (3.4), then smoothly tends to the eigenmode solution (3.2). By contrast, if 
p = pl, (i.e. with (yi) = 0), (3.5) has still the solution (3.6), but it is not unique: a 
new solution is obtained by adding the eigenmode yi .  The general solution of (3.5) 
is then the linear combination of: 
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(3.10) 

These solutions correspond to the ‘plateaux’ at p = and p = pi represented in 
figures 2 and 3. The constant c, can be computed as a function of A2 from the energy 
constraint (2.14), and the stream function y is still given by (3.4). Two special limits 
are worth noticing: for A = 0 we recover the pure eigenmode (3.2) (c, --f co), while 
we have c, = 0 and recover (3.6) for A = A;, defined by introducing p = pk in (3.7). 
These limits correspond to the two ends of the plateaux shown in figure 2. 

These mixed solutions can be physically interpreted as the coexistence of two 
thermodynamic phases. Solution (3.4) can be said to form a continuous phase, for 
which (3.7) can be interpreted as an equation of state, while solution (3.2) forms a 
phase only defined for discrete (inverse) temperatures PA. The coexistence of these two 
phases is possible for j3 = only, like the coexistence of a liquid and a solid phase at 
the transition temperature. The proportion of the two phases, corresponding to the 
coefficient c,, is then determined by the energy. This is the sum of the energy of each 
phase, because of the orthogonality of the function yI, with the other eigenmodes 
used in the expansion (3.6). 

3.4, Selection of the solutions by their entropy 

We have obtained several solutions for a given value of the control parameter A.  A 
choice can be made by comparing their entropy and selecting the solution with the 
highest value. Notice that a solution with a lower entropy may still be relevant as 
a metastable state, and this has to be settled by determining whether it is a local 
entropy maximum. This question will be considered in the next subsection, and we 
here only compare the entropy of the different solutions, computed from (2.16). 

In the case of the eigenmode solutions (3.2), the entropy of mode n is 

Y, = PnE (1 + 2)  (3.11) 

In the case of eigenmodes with zero net circulation, the entropy reduces to 

Y, = PnE. (3.12) 

This proves on the grounds of the statistical theory that the mode with the highest 
entropy is the fundamental ( n  = 1). 

However this has to be compared with the entropy of the solutions in the continuum. 
The expression for the entropy (2.16) then yields 

(3.13) 
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For A = 0, we have simply S = p!")E, so that the first root Pi1) of the function F has 
the maximum entropy in the continuum. The comparison with the first eigenmode 
solution with zero average will depend on the respective positions of p? and the 
eigenvalue pi. This depends on the shape of the boundary as shown in the case of a 
rectangular domain with different aspect ratios (see 94): in the square, p?) > pi, so 
that the continuum solution is selected, but the contrary is obtained for a rectangle 
with aspect ratio greater than 1.12. 

= pi1), using the approximation (3.9), 
which yields 

For A2 small, we can expand (3.13) around 

(3.14) 

The solution with the highest p has the highest entropy, as expected. This solution 
is in competition with the mixed state, whose entropy is still given by (3.13), and the 
selection will depend on the respective positions of pi1) and pi, in continuity with the 
case A = 0. 

3.5. Second-order variations 

The previous solutions cancel the first constrained variations of the entropy (they 
are critical points), but are not necessarily maxima. To settle this, we have to check 
whether the second-order variations h2S < 0 for any variation that strictly conserves 
the constraints. This is equivalent to checking that the second variations of the 
functional (free energy) 

J = S - BE - 1 E(o)y(a)do - 1 [ ( r )  (1 p(r ,  o)do) d2r (3.15) 

are strictly negative for any small variation 6 p ( r , o )  which does not change the 
constraints at Jirst order. A Taylor expansion of the general expressions for the 
energy (2.4) and entropy (2.7) yields 

(3.16) 

(the second variations of the other constraints vanish). The integral of the second term 
can be written J(V6y)2d2r which is always positive. Therefore, when B is positive, 
d 2 J  is negative and the (single) critical point is a maximum. It is still a maximum as 
long as B is greater than the first eigenvalue of the Laplacian, pp, as stated by Robert 
& Sommeria (1991). For smaller values of B ,  the selection of entropy maxima is not 
given by any simple criteriom. 

However in the limit of strong mixing, it is possible to discard some solutions of 
(2.13) as non-maxima, when p is smaller than P;.  For that purpose we consider a 
particular variation of the form 

6P(r, 0) = Y ( O ) ( O  - r)uW (3.17) 

This perturbation is in a mode with zero mean, so it does not change the circulation; 
and the dependency in a has been set to keep the normalization condition (2.1) 
unchanged. The basic state is assumed to be a solution of the continuum, or an 
eigenmode of the Laplacian with f i n  < p'1, so that the perturbation is orthogonal to 
this basic state. Therefore neither the energy constraint, nor all the other constraints, 
are modified at first order by the perturbation (3.17). In the limit of strong mixing, we 
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can make the approximation p ( r ,  o) N y(o) in the first integral of (3.16), and obtain 
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d 2 J  = - 1 (1  - r2 )  (i - 1) 
2 

(3.18) 

which is strictly positive when P < P i .  It follows that for P < Pi, the critical point 
cannot be a local maximum for the entropy. Thus, every solution beneath the 'plateau' 
P = pi in figure 2 is not only a state with a lower entropy than the corresponding 
mixed mode (for a given A ) :  it is not euen a local maximum. In physical terms, it can 
be destabilized by a perturbation yi (the first eigenmode with a zero net circulation). 
Since P - 1/12, where l is the typical scale of the flow, this result corresponds to the 
observation that vortices tend to merge to form structures with larger scales, which 
increases the entropy for given integral constraints. 

< P.('), the corresponding eigenmode y'; has a lower entropy than the 
continuum, and we now show moreover that it is not euen a local entropy maximum. 
We use a similar method, applying to y;  a particular variation of the form 

dp(r,o) = y(o)(o - r )  1 - P*(1)4b*(lu(r)) (3.19) 

constructed from the mode of the continuum with zero circulation. As before, this per- 
turbation changes neither the circulation nor the normalization condition. Moreover 
its Fourier decomposition (3.6) does not involve eigenmodes with zero circulation, so 
that it is orthogonal with the basic state y;, and does not change the energy at first 
order. As previously, we calculate the second variation of the free energy: 

d 2 J  = (1 - r 2 )  F'(p.''')(P.'" - P i )  (3.20) 

which is strictly positive if Be(') > pi (since F' > 0, see Appendix C). Therefore 
when P; < P.('), the eigenmode solution y; is not a local entropy maximum (it can be 
destabilized by a perturbation with the structure of the first solution of the continuum 
with zero mean). The solutions of the continuum at the other end of the plateau (i.e. 
for p < p i )  are also not maxima (as shown above), so we expect that this property 
persists by continuity along the whole plateau, since no other branch of solutions is 
crossed. 

In the case 

( 

4. Application to a rectangular domain 
4.1. Predictions in the limit of strong mixing 

We now illustrate these general results for the case of a rectangular domain whose 
sides are denoted by a = d/2 and b = 1 / ~ ' / ~  (where z = a /b  2 1 is the aspect ratio). 
For this domain, the eigenmodes and the corresponding normalized eigenfunctions 
are explicitly given by 

Pnm = -  (T - +zm2 )d. 

ynm = 2 sin(nnx/z1/2) sin(mnz1/2y) (4.2) 
(where the origin of the Cartesian frame is taken at the lower left corner of the 
domain). The integer n 2 1 gives the number of vortices along the x-axis while m > 1 
gives the number of vortices along the y-axis. We can check that (yam) = 0 if n or m 
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is even and (ynm) = 8/(nmn2) if n and m are odd. The eigenvalues defined in 53 can 
now be explicitly given. For example, we have 

(4.4) 

The solutions for the continuum are obtained by a numerical resolution of the 
Helmholtz equation (3.5) for a set of parameters p. We then tabulate the functions 
F ( P )  and F’(P), determined from the computed stream function by (3.8), (B2.4), 
and plot p versus A2. This curve is indicated in figure 3 for the case of a square 
domain (z = 1); it is quite similar to the case of a rectangle with z = 2, plotted in 
figure 2, in agreement with the general properties derived in Appendix C. We have 
also represented in figure 3 the vorticity fields corresponding to different points along 
the curve p versus A2.  The stream lines of the continuum preserve the symmetries of 
the domain (since the solution 4~ of (3.5) is unique for a given p), with an extremum 
at the box centre. Secondary vorticity extrema appear for low (negative) values of p 
(as the ‘mark‘ of the eigenmodes of higher order encountered along the continuum), 
but these solutions are not relevant, as they are not local entropy maxima for p < p21 
(see 53.5). Therefore the solutions of the continuum will be called monopoles. 

The mixed solutions involving the eigenmodes with zero mean are also plotted in 
figure 3, and correspond to the horizontal lines on the graph f l  versus A2. These lines 
start with the pure eigenmode at A2 = 0 and join the continuum smoothly, as c,  + 0 
in (3.10). The mixed solutions involving the modes higher than (2, 1) are not local 
entropy maxima and must be eliminated (at least in the limit of strong mixing), like 
the mode (2, 2) represented in figure 3. Therefore the relevant mixed solutions involve 
only the dipole structure. 

The competition between the monopole and dipole solutions is settled by comparing 
their entropy for a given value of the control parameter A .  The entropy of the different 
branches is calculated by (3.11), (3.13) and plotted in figure 4 for the case of the 
square. We observe that the monopole always has the highest entropy and is therefore 
predicted for any value of A, while the dipole is not even a metastable state, as shown 
in 53.5. In the monopoles with small A > 0, the positive vorticity gathers in the 
central region, while the negative vorticity remains on the periphery. The reversed 
monopole, with negative vorticity at the centre, is also a solution, but it has a lower 
entropy (corresponding to the dashed line in figure 4). These two configurations 
become equivalent at A = 0, where the two branches join, but remain quite distinct 
physical states (with opposite velocity). This corresponds to a parity breaking for the 
final organization of the system : the flow spontaneously rotates in either direction, 
although it has a zero circulation. For a weak non-zero circulation ( A  small), the 
reversed monopole is probably still a local entropy maximum by continuity. In any 
case, it is not even a local maximum beyond the junction with the branch p = p21 

(point M in figure 4), as stated in 53.5. 
In the case of a rectangle with sufficiently large aspect ratio z, the dipole has a 

higher entropy than the monopole, in contrast to the square. The dipole mixed state 
is then predicted along the branch p = p2, ,  as shown in figure 5. The competition 
between the monopole and dipole for weak circulation is settled by the comparison 
of p21 and pi’), the first zero of the function F .  These two numbers, proportional to 
the entropy of each solution for A = 0, by (3.12) and (3.14), are plotted versus the 
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FIGURE 4. Entropy of the main modes in the square domain versus the control parameter A.  
The solution with the highest entropy is along the solid line, and the others are along the dashed 
lines. The solution of the continuum (monopole) always has the highest entropy. For negative 
jl (and A > 0), the vorticity is maximum at the centre, and negative vorticity is pushed toward 
the edge, while for positive p the vorticity is maximum on the edge (and vorticity is uniform for 
p = 0). The dipolar solution (branch = -49.35) has a lower entropy, as does the reversed 
monopole, along the dashed lines. More precisely, we have shown in $3.5 that neither the dipole 
(since p21 < p.' = -46.1) nor the solutions below point M are local entropy maxima. 

A 

= 

aspect ratio z in figure 6. We clearly see the crossover at z N 1.12, beyond which the 
dipole dominates. 

4.2. Validation and discussion 
As a simple example of an application, consider an initial state with zero circulation 
(r = 0) in the square domain with area unity. We then predict a final organization 
into a monopole (figure 4), with P = /I?) N -46.1. The actual stream function y 
is obtained from 4 p  by (3.4), but the expression is undetermined for r = 0 (then 
P ( 4 p )  - 1 = F ( P )  = 0 from (3.7)). We have therefore rather to take the limit A -+ 0 
in (3.4), using (2.17) and (3.7)-(3.8), which yields 

The arbitrary sign corresponds to the two possible directions of spontaneous rotation 
as discussed in $4.1. We numerically obtain Fr(P?) N 2.44 x lop2 and a maximum 
7.88 x lop2 for 14,p (reached at the box centre). 
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FIGURE 5. Same as figure 4, but for the rectangular domain with aspect ratio 2. The mixed solution 
now has the highest entropy along the line p = pzl = -39.5 > pi') = -50, and joins continuously 
the monopole solution for A = A:, = 2.06. 

We can then estimate the quality of the linearized approximation by calculating the 
higher-order terms in (A1 1). They increase with the typical magnitude of y ,  depending 
on the energy E by (4.5). The nonlinear correction depends on the moments r3 and r4 
of the initial vorticity field. In the case of a symmetrical initial vorticity distribution, 
r3 = = 0, it depends only on the kurtosis K u  = r4/ri. The correction is 
proportional to K u  - 3, so that we expect that the linearized approximation remains 
particularly good, even at fairly high energy, when the kurtosis is equal to 3, for 
instance with a Gaussian distribution (see the end of $2.1). 

Let us consider the simple example of four alternating vortices in the square domain 
with side unity, represented by the stream function yo(x, y) = ( 1/4n2) sin 2nx sin 2ny 
(normalized such that r2 = 1). The corresponding probability distribution of vorticity 
y(o) is a bell-shape symmetric curve, maximum at o = 0, and vanishing beyond 
the vorticity extrema o = f2.  The energy is E = 1/16n2, which sets the maximum 
stream function ymax = 4.0 x lop2 by (4.5) and the numerical values given above (we 
assume that the system organizes with a positive ( y ) ,  but the other sign would be 
equivalent). The maximum value of the argument in (2.9), reached for o = 2 and 
y = ymax, is Pay = 3.7, which is not small. However this is only an extreme value, 
with little effect on the locally averaged vorticity field. The nonlinear correction to 
the curve o - y is better estimated by (All) .  We have P ( + p )  = 1 + F ( p )  = 1, since 
F ( P )  = 0 for f l  = fl! '), so that P < y >= -0.509, using (4.5). From the initial 
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FIGURE 6.  Entropy of the monopole and the dipole in a rectangular domain versus the aspect ratio 
z. The selected structure is the monopole when z < 1.12, and the dipole when z > 1.12. 

z 

condition we calculate K u  - 3 = -3/4. The resulting values for the coefficients 
in ( A l l )  are B2 = 0.191 b2 and B3 = 0.125 p 3 ,  and the maximum values for the 
nonlinear corrections B2&,, = 0.65 and B3y iax  = -0.79. The resulting correction 
(-0.14) is smaller than the linear term B1ymax - -PY,,,,, = 1.85 (it would have to be 
corrected by the actual perturbative resolution of (A1 1) with the integral constraints). 
Therefore the linear approximation is a reasonable first approach in this case. 

The numerical solution of the maximization problem, solving the nonlinear equation 
(2.12), has been obtained by Juttner et al. (1995) for an initial condition with zero 
circulation in a square. The solution then depends on the initial distribution of the 
vorticity levels, and a choice of patches with positive and negative vorticity is made. 
An organization into a monopole is obtained at moderate energy, in agreement with 
our result. A similar organization has also been obtained by Pointin & Lundgren 
(1976) with point vortex statistics, corresponding to a limit of small-area vortices. 
Our analysis, although providing less precise predictions, yields a wider understanding 
of these results, and allow one to classify them in more general cases. Qualitative 
discrepency with our results appears only for fairly peculiar initial conditions, close 
to the energy upper bound. A dipolar state is then obtained by Juttner et al. (1995), 
with two possible orientations depending on the initial vorticity area. 

These predictions are also found to be in good agreement with a variety of 
numerical simulations and laboratory experiments (Juttner et al. 1995; Verron & 
Sommeria 1987; Marteau, Cardoso & Tabeling 1995). For a four-vortex initial 
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condition, as we have considered here, two vortices of the same sign are observed 
to merge, while the two vortices of the opposite sign are stretched around, leading 
to the predicted monopole final state. By contrast, numerical simulations indicate 
organization into a dipolar state for a rectangle with aspect ratio 2 (Juttner, private 
communication). Numerical simulations of Montgomery & Joyce (1974), using a 
point vortex dynamical code, and laboratory experiments of spin-down (van Heijst, 
Davies & Davis 1990) also show organization into a dipolar state for a rectangular 
domain. However a more precise test of the predicted transition with aspect ratio 
should be undertaken. 

When the initial condition is at smaller scale, involving a pattern with more than 
four vortices, the energy (normalized by the enstrophy) is smaller, so that our linear 
approximation is still better justified in principle. An organization into a global 
rotation has been for instance obtained for two-dimensional turbulence forced at 
small scale in a square box (Sommeria 1986). Occasional reversals of the rotation 
have been observed in this laboratory experiment, interpreted as a switching between 
the two stable states, under random turbulent fluctuations. We now provide a clear 
explanation of this behaviour in terms of statistical mechanics. By contrast, in a 
laboratory experiment of freely decaying two-dimensional turbulence, Marteau et al. 
(1995) obtain a dipolar final state for an initial condition at small scale, and the 
o - w relationship displays a significant concave shape. This is still consistent with 
the statistical theory, but corresponds to a case of high energy and low vorticity area 
(therefore high kurtosis), rather than the integral constraints expected from the initial 
condition. A similar conclusion is obtained from typical numerical computations of 
two-dimensional turbulence, initiated at small scale in a doubly periodic domain. The 
final o - w relationship is then close to a sinh curve, as analysed by Montgomery 
et al. (1992). Yet the initial condition corresponds to a low energy, for which our 
linearized analysis is quite justified (and would simply yield the fundamental sine- 
shape eigenmode in the doubly periodic case). We can interpret this discrepency 
by considering that the evolution is then long, involving successive vortex mergings, 
and the probability distribution of vorticity changes under viscous effects : enstrophy 
is dissipated and vorticity remains concentrated in small vortex cores. The effective 
initial condition to consider is the vorticity distribution just before the last merging 
event leading to the global self-organization : the energy normalized by enstrophy 
is high (since enstrophy has decreased with constant energy), the area of non-zero 
vorticity is small, and the observed shape of fb,g is then in agreement with theory. Of 
course its predictive power is then limited, as long as a correct treatment of viscous 
effects is not given. 

5. Circular domain 

quantity (resulting from the rotational symmetry) that is the angular momentum: 
The domain (9) is now a disk of radius a = 1/.n'/2. We have a new conserved 

L = or2d2r. (5.1) I 
It can be taken into account in the variational principle (2.8) by adding a new 
Lagrange multiplier denoted )!2/2. Then the optimal density probability becomes 
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and the relation between the locally averaged vorticity and the stream function takes 
the form W = f ~ , ~ ( y  + ; f i r2)  where is given by (2.11). This relation defines either 
an axisymmetric flow, or a set of symmetry-breaking flows differing by their angular 
phase. Such a set of solutions appears from the statistical theory as the most probable 
outcome of a random selection from microscopic states (with the appropriate integral 
constraints). However, it is remarkable that such a set of equivalent equilibria corre- 
sponds in fact to the same solution of the Euler equation steadily rotating with angular 
velocity Q. Then, it is natural to introduce the relative stream function w’ defined by 

y(r,  8, t )  = y’(r, 8 - a t )  - (5.3) 

and the corresponding vorticity 67 = -Ay’. Using (5.3) we get 

a = a ’ + 2 a  and r = f ’ + 2 Q  (5.4) 

where quantities with primes describe the fluid in the rotating frame (B’) in which the 
equilibrium flow is stationary: indeed in this new frame, the vorticity a’ is a function 
of y’ alone. 

We now assume that this function can be linearized, leading to an equation with 
the same form as (2.13): 

(5.5) Ay’  + k2Y’ = k 2 ( y ’ )  - r’, 
y’=O on (89) 

where we assume a negative coefficient p = -k2 < 0 (we shall see below how to extend 
the results for a positive coefficient). The parameter k2  and the angular velocity SZ are 
determined from the conserved quantities in the initial frame of reference, leading to 
the following constraints, obtained by combining (2.4) (5.1) and (5.5): 

271. 
ar 

E = i k 2 ( ( y ’ 2 )  - ( w ’ ) ~ )  + i r ( Y ’ )  - i a L  + -. 
47c (5.7) 

Like in $2.2, we can justify the linearized equation (5.5) as an expansion of the 
equilibrium state in terms of the small quantity poy’el, in the limit of strong mixing. 
This yields the relation analogous to (2.15) : 

p = -k2 = (1 - r )p. 2 -  

The entropy is given by (2.16) with the substitution y +. y’: 

Y = !p2((y’)2 - (y’2)). (5.8) 

The study is then very similar to the previous one, but the main difference is that we 
have to deal with two integral constraints (5.6) and (5.7) instead of one. It will appear 
that the flow structure still depends only on a single control parameter A given by 

with 

(5.10) 

(we can show that H 3 0, see Appendix B). The equilibrium flow is fully determined 
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by the three initial parameters f, L and E .  These various initial conditions yield the 
same flow structure for a given value of A,  but with different rotation rate L2 and 
energy E.  

In the case of a circular domain, the Helmholtz equation can be explicitely solved 
in terms of Bessel functions. We can recover the three kinds of solutions that we have 
studied in $3. 

(i) The eigenfunctions with a vanishing mean value are given by 

y’ = CJn(kr)  sin(n8 + 6) (5.11) 

with n # 0, where Jn is the Bessel function of the first kind with order n. Their 
angular average at each radius vanishes, so that from (5.6), these solutions are only 
obtained for A = 0. Their relative circulation r’ vanishes, so that the angular velocity 
is L2 = f /2, from (5.4). The inverse temperature P = -k2 is an eigenvalue given by 

Prim = -k2 nm = - n 4 m  (5.12) 

where anm denotes the mth zero of the Bessel function Jn. Their amplitude C can 
be computed from the energy constraint (5.7). In the case of the fundamental mode 
(n, m) = (1, l), we find 

2H’I2 
C = +  

- kllJO(%l) 
in terms of the parameter H defined in (5.10). Finally, the entropy can be simply 
written as 

Y n m  = PnmH. (5.13) 
For (n,m) = (1,l) the solution is formed by two vortices of opposite sign, and we 
recover the dipole structure studied in the rectangular domain ($4). However, in the 
laboratory frame (B), this structure is no longer stationary in general, but rotates 
about the origin with angular velocity Q and, for high values of Q, looks like a 
decentred monopole. 

(ii) The continuum solutions are axisymmetric (monopole) and can be expressed 
in terms of Bessel functions of the form (see Appendix B): 

(5.14) 

where a = k/nn’/’, and exist for all the values of A .  Their relative circulation is given 
by (5.6) which yields : 

(5.15) 

from which we can compute the angular velocity L2 by (5.4). Their temperature (or 
parameter a)  can be then related to the control parameter A with the aid of the 
constraints (5.6) and (5.7). The final result (see Appendix B) is an equation of state 
of the form 

(5.16) 

Like in $83 and 4, this equation exhibits several solutions that must be classified 
according to their entropy 

(5.17) 
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computed from (5.8) and (5.14). As mentioned above, these solutions are obtained for 
p = -k2 < 0. This condition corresponds to A2 < 2, obtained by the development of 
J,(a) in (5.16) in the limit c( + 0 (i.e. k + 0). The case of positive temperatures can be 
deduced from the previous one by performing the transformation k -+ ik and using 
J,,(it) = i"ln(t) where I , , ( t )  is the modified Bessel function of order n. For p -+ +a, 
we find that A2 -+ 3 which is an upper bound for the control parameter. 

(iii) The mixed solutions (monopole+dipole) are of the form 

(5.18) 

with n # 0 and where r' is still given by (5.15). These solutions exist for 0 < A < A;, 
and their inverse temperatures p = -k2 are the eigenvalues (5.12). The constant C 
can be computed from (5.6) and (5.7) as a function of the control parameter. For 
A = 0 we recover (5.11); for A = A;,, defined by introducing a = anm(n # 0) in (5.16), 
we have C = 0 and we recover (5.14). For the dipole (n,m) = (1, l), we find explicitly 

with A; = 24/a:,. 
For 0 < A < A;, a competition occurs between solutions (5.14) and (5.18). To 

select the most probable structure, we have to compare their entropy, given by (5.17) 
in both cases. For A = 0, we find for the monopole 

9") = -7La:,H (5.19) 

and for the dipole 
Y'4p(d) = -na:l H.  (5.20) 

Since a31 2: 6.38 and all  N 3.83, the dipole is found to have a higher entropy than the 
corresponding monopole (see figure 7) and will be selected in the equilibrium as the 
most probable state. These conclusions still hold in the whole range 0 < A < ALm. 
The tripole solutions, i.e. the mixed modes at p = p21, have also an entropy higher 
than the monopole for sufficiently small A,  but it is always dominated by the dipole 
in our linearized approximation. The considerations of 53.5 can be readily extended 
to the circular case, and the mode with the highest entropy, the dipole or monopole 
depending on A,  appears to be the only entropy maximum: all the other modes are 
not even local maxima. 

This conclusion is in agreement with previous investigations of maximum-entropy 
states in a disk by Smith & O'Neil (1990) and Chen & Cross (1994). They find 
indeed either axisymmetric or dipolar structures in the ranges of parameters they 
have considered. Whitaker & Turkington (1994) obtain a tripolar structure, but with 
a high-energy state involving little mixing, for which our analysis clearly fails. The 
parameter range covered by these studies is limited, and our analytical results provide 
a useful complement for the limit of strong mixing, as well as a general understanding 
of the problem. It then appears from these different studies that the axisymmetric, 
dipolar and tripolar structures are most probably the only possible states of maximum 
entropy in the disk. This indeed corresponds to the different structures observed in the 
laboratory experiments on self-organization by Denoix, Sommeria & Thess (1994). 
We can conclude from the present analysis that the tripole can only be observed with 
a strongly nonlinear w - y relationship. Otherwise it is not an entropy maximum, 
although it is a possible solution of (2.12) with the right constraints. 
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FIGURE 7. Same as figure 5 but for the circular domain. The mixed solution has the highest 
entropy along the line p = pll = -kfl = -46.12, and joins continuously the monopole solution 
for A = A’,, = 1.28. The tripole (line /3 = /321 = -ki ,  = -82.86) has a lower entropy, as does the 
monopole for A < 1.28. 

6. Comparison with a minimum-enstrophy principle 
Selective decay (minimum-enstrophy) empirical principles have been proposed to 

explain self-organization in two-dimensional turbulence. Such principles have been 
found useful in some cases, but without clear physical support. The predictions also 
disagree in many cases with computations or laboratory experiments. However, we 
shall show in this section that a form of minimum-enstrophy principle is recovered 
by the statistical theory in the limit of strong mixing. This provides therefore a 
justification of this principle from the Euler equations, while specifying its range of 
validity. 

The justification of a selective decay principle is often given in term of weak viscous 
effects: the enstrophy tends to cascade toward small scales where it is dissipated, while 
energy remains trapped to large scales. The conserved quantities of inviscid motion 
are classified into two groups : the ‘dissipated integrals’ (like enstrophy) which undergo 
turbulent cascades and decay even with a small viscosity, and the ‘rugged integrals’ 
(like energy) which remain constant in the limit of small viscosity. This property has 
suggested a general organization principle, stating that the final flow would minimize 
enstrophy with the constraint of a given energy, and possibly the constraint of other 
rugged integrals (see e.g. Hasegawa 1985). 

Nevertheless a general justification in terms of viscous effects leads to physical 
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contradictions. Indeed a good experimental example of two-dimensional turbulence 
is provided by electron plasmas, for which the vorticity is proportional to the elec- 
tron density and must of course remain positive. However the minimum-enstrophy 
state involves in general both negative and positive vorticity, and some ad hoc re- 
striction of positivity must be added. By contrast the maximum entropy prediction 
always preserves the distribution of vorticity levels, so that no spurious negative 
vorticity appears. The selective decay hypothesis has been found most useful in 
quasi-geostrophic flows over topography (Bretherton & Haidvoguel 1976), where the 
vorticity is replaced by the potential vorticity. This quantity is conserved and stirred 
by the inviscid dynamics in the same way as vorticity in the Euler systems. The 
state of minimum potential enstrophy for a given energy appears to be selected. This 
principle cannot be justified by viscous effects, as they keep the same form as in the 
two-dimensional Navier-Stokes equations : they would still dissipate the enstrophy, 
not the potential enstrophy. Therefore the self-organization of two-dimensional tur- 
bulence is essentially an inertial process, and viscous eflects cannot provide a general 
principle of organization. 

In this context of quasi-geostrophic flows over topography, the state of minimum 
potential enstrophy has been also justified as a statistical equilibrium of (inviscid) 
truncated spectral models (Carnevale & Frederiksen, 1987) : these states tend to the 
state of minimum potential enstrophy when the truncation wavenumber tends to 
infinity. Fluctuations are then mostly at very small scales and contain negligable 
energy. However truncated spectral models do not predict any mean flow in the 
absence of topography (furthermore the truncation breaks many conservation laws, 
leaving only the enstrophy and energy as conserved quantities). 

The point of view of our statistical theory is that part of the initial enstrophy 
r2 is irreversibly transferred into fine-grained (microscopic) vorticity fluctuations, so 
that the final coarse-grained enstrophy, calculated from the field of locally averaged 
vorticity 

is smaller than r2. This is physically similar to the situation described by Carnevale 
& Frederiksen (1987) with spectral models, but the formalism is now quite different, 
with a much wider range of applicability. In the presence of a small viscosity, we can 
assume that the fine-grained fluctuations are eventually smoothed out (their enstrophy 
is dissipated), leaving only the steady flow with the vorticity field W(v) .  Notice that 
such viscous smoothing is passive (like in usual theories of turbulent inertial range), 
and does not control the flow organization. The result is an enstrophy decay for 
constant energy, but without reaching the minimal-enstrophy state in general. 

We can however justify a minimum-enstrophy principle in our limit of strong 
mixing. The mere minimization of enstrophy with given energy clearly yields the first 
eigenmode of the Laplacian in all cases, unlike our calculations. However we recover 
our results by further assuming that the circulation r is also a rugged integral, 
hence an additional constraint in the minimization problem. Let us minimize the 
coarse-grained enstrophy rFg., with a given energy E and circulation r ,  leading to 
the condition for the first variations 

(6.2) 

where 1 and p are Lagrange multipliers. This leads again to the linear relationship 
(2.13) between vorticity and stream function, as in the strong mixing limit of the 

u ; g .  - ,ME - p d r  = o 
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statistical theory. Therefore the same branches of solutions are obtained. The solution 
with the lowest enstrophy must be selected, and it appears to be also the solution 
with the highest entropy. Indeed, expressing the equilibrium vorticity as in (2.13), we 
get from (2.16) 

(6.3) 
Thus the minimum enstrophy principle in the form (6.2) gives the same results as the 
statistical theory in the limit of strong mixing. A similar conclusion is drawn for the 
circular domain, considering the angular momentum as a rugged integral, in addition 
to the circulation. Of course this correspondence no longer holds, for higher energy, 
when linearization is longer more valid. 

r;g = r2  - 2 9 .  

7. Conclusions 
We have obtained general expressions for maximum-entropy states when the argu- 

ment (paw) in (2.9) is small, so that the relevant relations can be linearized. The results 
have been generally expressed in terms of the eigenmodes of the Laplacian, and the 
particular cases of a rectangular and circular domains have been developed. In this 
linear approximation, our statistical theory justifies a form o f  minimum-enstrophy 
principle, considering the circulation as a rugged integral, in addition to energy. 
The limitations of this principle are clearly found by considering the higher-order 
expansion (see Appendix A and $4.2). 

This approximation is valid in a limit of strong mixing, near the maximum of 
the curve S ( E ) .  The range of validity appears to be remarkably large (it is in fact 
sufficient that gay - l), as indicated by the comparision of the approximate entropy 
(2.16) with the exact value (figure l), and also in the discussion of $4.2. 

In a square domain, we correctly predict an organization into a monopole, observed 
in numerical simulations and laboratory experiments. We also predict a transition to 
a dipole when the domain becomes slightly rectangular, and this is in agreement with 
preliminary tests. In the circular domain, we predict an axisymmetric or dipolar state, 
depending on the integral constraints. Tripoles are also solutions of the linearized 
equation (5.5), but are excluded as not entropy maxima. We therefore conclude that 
tripoles can only exist with a strongly nonlinear relationship between vorticity and 
stream function. 

The present procedure can be readily applied to other geometries, and also to 
geophysical models involving the multi-level quasi-geostrophic equations, and it pro- 
vides a quite interesting approach to these problems. The first reason is of course 
that equation (2.12) determining the flow structure can be linearized and analytically 
solved to a large extent. More importantly however, the results in this limit of strong 
mixing depend only on a single control parameter A instead of the whole distribution 
of vorticity levels. This allows a general understanding of the problem, and a classifi- 
cation of the equilibrium states. By pushing the expansion to higher order in energy, 
the influence of the successive moments of the vorticity probability distribution can 
be understood. For a symmetric distribution in positive and negative vorticity, the 
kurtosis K u  determines the deviation to the linear relationship (see (A12)): if, in 
addition (v) = 0, the cc) - w relationship behaves like a tanh function when K u  < 3 
and like a sinh function when K u  > 3 (for instance with an initial condition involv- 
ing compact vortices). The opposite limit of maximum energy, for a given vorticity 
probability distribution (as computed by Carnevale & Vallis 1990), is also a quite 
useful complement to the understanding of the structure of the problem. The full 
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exploitation of the statistical theory requires however the numerical resolution of the 
general equation (2.12), joining these two limits with increasing energy, as performed 
for instance by Turkington & Whitaker (1995) or Juttner et al. (1995). 

We must stress that this theory, unlike previous ones, provides a well-defined 
prediction for the final flow organization in all cases, consistent with the properties of 
the Euler equations. This fact can be clearly understood in our limit of strong mixing. 
In particular it is remarkable that most solutions of equation (2.13) can be eliminated 
as not entropy maxima, even in a local sense, as shown in $3.5: only the solution 
with the maximum entropy (or minimum coarse-grained enstrophy) is selected, (with 
possibly also a second, metastable, state). 

Testing the range of validity of this statistical theory requires an extensive survey of 
examples, beyond the scope of the present paper. A prerequisite for such a systematic 
comparison is of course to be able to calculate and understand the predictions of 
the statistical theory with general distributions of vorticity levels. This is not an easy 
untertaking, and the present paper contributes to it. Some comparisons have already 
been discussed in $4.2, as well as in Juttner et al. (1995), and references herein. A 
good agreement has been obtained when a final state is reached by rapid stirring. 
Efficient stirring is limited to regions with strong vorticity, while transfers towards 
small scales by straining effects dominate in the surrounding background. This leads 
to some discrepancies in the statistical theory (Denoix et al. 1994), whose effects 
tend to cumulate when the evolution towards the final state takes a longer time. 
Boundary layer detachment is another source of discrepancy, feeding the flow with 
vorticity sheets emitted by the boundary layers (e.g. Sommeria 1988; van Heijst et 
al. 1990). It is not known to what extend such discrepancies would persist in the 
limit of an inviscid flow. Yet the statistical equilibrium is an ideal limit, quite useful 
as a framework to study self-organization. As a second step, restrictions to complete 
stirring can be introduced in the form of kinetic equations, describing relaxation 
towards statistical equilibrium. This approach is developed by Robert & Rosier 
(1996), and by Kazantsev, Sommeria & Verron (1995) for oceanic currents. 

Notice finally that the present paper provides a set of steady solutions of the Euler 
equation for any given energy and circulation (and angular momentum in the disk 
case). This can be useful even without any reference to the underlying statistical 
theory. 

This work is part of a continuous collaboration with R. Robert and team of 
Laboratoire d’Analyse numkrique at Universitk de Lyon. We have benefited from 
many discussions with this group, especially on mathematical aspects. We thank B. 
Juttner for kindly providing figure 1 and N. Whitaker for his helpful collaboration. 

Appendix A. The strong mixing expansion 
When the parameter pay is small, we can expand the basic equations in powers of 

this quantity. This expansion must be carried out directly to order 1 for the stream 
function (because the zero-order term vanishes for zero circulation), and to order 2 
for the energy and the entropy. As a result, (2.9) (2.10) and (2.11) must be written in 
the approximate form 

z = 1 - A 1 P y  + $ 4 2 ( P W ) 2 ,  (A 1) 
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co = -Ay  2: A1 + (A: - A2)ByV2, (A 3) 

A ,  = g(a)o"do ( n  # 0) (A 4) 

- 

where the different moments of the function g(o) are denoted by 

.I 
(we have set A. = 1, without loss of generality). The Lagrange multipliers g(a) must 
be related to the global vorticity distribution y(o) thanks to the integral condition 
(2.5) that expands to 

1 + (A1 - 0)B(v) + i ( O 2  - 2Al0 + 2 4  - A2)P2(V2) 

where () = Jd2r denotes the average over the whole surface (3). Equation (A5) can 
be reversed to give 

-i(02 - 2Al0 + 2Ai - A2)D2(y2)}. (A6) 

Combining equations (A4) and (A6) we obtain to order 1 

An = rn - (A1Tn- L+1)B(v) 

To order 1 for A1 and order 0 for A2, we have 

= r + (1 - r 2 ) P ( Y )  

A2 N 1 (A 9) 
Substituting in (A3) yields equation (2.13) for the stream function, with the corre- 
spondence (2.15) between /? and 8. 

Expressing lnp(r,o) by (2.9), we write the entropy (2.7) as a function of the 
conserved quantities and their canonical Lagrange multipliers : 

S = 2pE + 1 B(o)y(o)do + / I n 2  d2r (A 10) 

Using (A6), (A8) and (Al) we expand C(o) = -lng(o) and I n 2  to order 2 and 
eventually find (2.16). 

The expansion can be pushed to higher order by a similar method. We need to go 
directly to order 4, since the term of order 3, related to the circulation, is small (of 
the same order as the term of order 4). This yields the equation for the new stream 
function v: 

where 
(A 11) 

3 - Av = Bo + Biv + &v2 + B3v 

B~ = -;b3 (r4 - 3r,2 - 4 r r 3  + 1 2 r 2 r 2  - 6 r 4 )  

(we have kept r2 for clarity, but f 2 = 1  with our choice of units, and rl EE r) .  The 
terms in B2 and B3 are small corrections in (Al l ) ,  and can be expressed with the 
first order solutions and inverse temperature f l .  Equation (Al l )  then becomes a 
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Helmholtz equation for the corrected function y, with a right-hand term given by the 
solution at previous order. The unknown coefficients BO and B1 are then obtained by 
the constraints on energy and circulation, like in (2.13). 

In the case of a symmetric distribution in positive and negative vorticity, we have 
r2n+l = 0 and equation (Al l )  reduces to: 

Appendix B. The equations of state b ( A )  
In this section, we give the main steps for deriving the relationship between the 

inverse temperature P and the control parameter A in the case of an arbitrary 
domain with no specific symmetry (equation (3.7)) and in the case of a circular 
domain (equation (5.16)). 

B.l. Arbitrary domain with no specijic symmetry 
The inverse temperature p is determined by the energy constraint (2.14) that we can 
write as a function of 4 p ,  defined by (3.4), in the form 

(1 - P(4dl2 = A2( (48)  - P(4;)). (B 1) 

The mean values of 4~ and 4; can be expanded in series with the aid of (3.6). Using 
the orthonormality of yn, we find 

The Fourier series (3.6) converges to a quadratic norm in 9*(9), so that (B2) and 
(B3) converge. If we now introduce the function F ( P )  defined by (3.8), it is easy to 
show from (B3) and (B2) that its derivative is given by 

so that (Bl )  takes the simple form (3.7). 

B.2. The case of a circular domain 

The general solution of Helmholtz equation (5.5) can be expanded on the basis of 
the eigenmodes of the Laplacian: 

where €0 = (y’) - r ’ / k 2  is a particular solution and J ,  is a Bessel function of order 
n. We have excluded Neumann functions because they would lead to divergencies in 
the core of the vortex ( r  -+ 0). The boundary condition forbids any angular variation 
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of I$ so that, if we assume that a = k/n'l2 is not a zero an,,, of a Bessel function, 
equation (B5) reduces to 

Taking the average () and eliminating (y ' )  yields the result (5.14). The inverse 
temperature p, or the equivalent parameter a, and the angular speed !2 (related to 
the relative circulation f' by (5.4)), are determined by the constraints (5.6) and (5.7) 
for the energy E and the angular momentum L. If we substitute the result (5.14) in 
these constraints, we obtain the following system for a and f ': 

Solving for r' in (B7) and substituting in (B8) yields the results (5.15) and (5.16). 
Working similarly on the entropy (5.8) leads to (5.17). 

In fact, we can come to these equations more rapidly if we notice that the quantities 
A and H are invariant under a solid rotation. It is then possible to carry out the 
previous study in a frame of reference (92%) where r vanishes and use the invariance 
of A and H to recover (5.15), (5.16) and (5.17) in the general case. Notice by the way 
that in (%) we have H = E ,  > 0 so that H is positive in any frame. 

Appendix C. General features of the bifurcation diagram 
In order to understand the behaviour of (3.7), we need to study the functions F 2 ( p )  

and F' (p ) ,  represented in figure 8. From the series expansion (B4) we have that F' > 0 
(since fi: < 0), so that the function F is strictly increasing on each interval on which 
it is defined: ]fi:+l,p:[ and ]p:,+a[. The asymptotic behaviour near each of the 
eigenvalues 8: is given by keeping only the divergent term in p - in the series 
expansions (B2) and (B4). It appears therefore that F ( f i )  -+ -a when p + /3:11 and 
F ( P )  + +a when p + Pfi-, so that F strictly increases from -a to +a in each 
interval ]p:+l,fl:[. As a consequence, there is a single root p!") for which F(P!")) = 0 
in this interval. These roots p!"' are solutions of (3.7) for A = 0, and are therefore in 
competition with the eigenmode solutions y;  discussed in $3.1. 

It is useful to follow these solutions as A2 increases from 0. For small A2, the 
pair of solutions (3.9) is obtained on each side of each root p!"). These are denoted 
pen-) and p("+) respectively in figure 8. As A2 increases, the solution p('-) < B!"' in 
the interval ]pi+l,pi[ decreases, while the solution p(("+')+) > p!.+l) in the interval 
]pi+2,p:+1[ increases, so they eventually join at p = pi+l. This junction is smooth, 
as seen from the asymptotic limit of (3.7) as p - p:+l. Indeed, from the asymptotic 
behaviour of F ( P )  and F'(P) ,  given by the divergent term in the series expansions 
(B2) and (B4), (3.7) becomes A2 2: -pi+l(yi+l) = (see equation (3.3)) on each 
side of the asymptote /3 = I;+*. Therefore the corresponding solutions tend smoothly 
to the eigenmode (3.2). 

We now discuss the solutions for p > f l y .  In the limit p + +a, (3.5) yields 
4p - 1/p, except in boundary layers where the Laplacian in (3.5) is dominated by the 
derivatives with respect to the coordinate [ normal to the boundary (89). Therefore 
(3.5) is only [-dependent, and its solution (consistent with the boundary conditions 
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FIGURE 8. Graph of the functions F2 (solid line) and F‘ (dotted line) versus b, where F is the 
function defined by (3.8) and (3.5). The computations are performed for the rectangular domain 
with aspect ratio 2, but the qualitative behaviour is general, as discussed in the text. The two 
functions diverge at the eigenvalues of the Laplacian, corresponding to an eigenmode with non-zero 
mean, by, fig...  The pair of solutions b(I-1 and f i ( l + )  of (3.7), around the first zero fl?) of F ,  is 
represented, as well as the similar pair around the second zero pi’). 

4p = 0 for [ = 0) is simply 

4 B = - ( l - e  1 -Pi) . 
P 

Denoting the perimeter of the domain by 9, (3.8) and (B4) yield respectively 

Therefore F ( P )  +. 0- when /3 -+ +a. Thus F strictly increases from --co to 0- on the 
interval ]P;’, +GO[, so that it remains strictly negative, and (3.7) has no solution on this 
interval for A2 +. 0. For large values of A2, there is always a solution corresponding 
to the limit of large P, deduced by introducing (C2) into (3.7): 

A 4  
I1 B E -  
2.93, 
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Coming back to the stream function w ,  using (3.4), (3.8), (Cl) and (C2), we find 

P. H .  Chavanis and J .  Sommeria 

and this quantity must remain small for the linear approximation to be valid. This 
approximation is therefore satisfied in the limit of strong mixing, as long as A remains 
finite, or at least if it tends to infinity with A 2 r  << 1. 
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